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ABSTRACT
We present the latest developments to the phase modulation method for finding binaries
among pulsating stars. We demonstrate how the orbital elements of a pulsating binary star
can be obtained analytically, that is, without converting time delays to radial velocities by
numerical differentiation. Using the time delays directly offers greater precision, and allows
the parameters of much smaller orbits to be derived. The method is applied to KIC 9651065,
KIC 10990452 and KIC 8264492, and a set of the orbital parameters is obtained for each
system. Radial velocity curves for these stars are deduced from the orbital elements thus
obtained.

Key words: asteroseismology – stars: individual: KIC 8264492 – stars: individual:
KIC 9651065 – stars: individual: KIC 10990452 – stars: oscillations.

1 IN T RO D U C T I O N

Radial velocities are fundamental data of astronomy. Not only in a
cosmological context, where the recessional and rotational veloc-
ities of galaxies are of interest, but also in stellar astrophysics. A
time series of radial velocity (RV) data for a binary system allows
the orbital parameters of that system to be calculated. However, the
importance of such data, which are meticulous and time-consuming
to obtain, creates a large gap between demand and supply.

In the first paper of this series (Murphy et al. 2014), we described
a method of calculating RV curves using the pulsation frequencies
of stars as a ‘clock’. For a star in a binary system, the orbital motion
leads to a periodic variation in the path length travelled by light
emitted from the star and arriving at Earth. Hence, if the star is pul-
sating, the observed phase of the pulsation varies over the orbit. We
called the method ‘PM’ for phase modulation. Equivalently, one
can study orbital variations in the frequency domain, which lead
to frequency modulation (FM; Shibahashi & Kurtz 2012). Similar
methods of using photometry to find binary stars have been devel-
oped recently by Koen (2014) and Balona (2014), though the FM
and PM methods are the first to provide a full orbital solution from
photometry alone. Indeed, the application of PM to coherent pul-
sators will produce RV curves for hundreds of Kepler stars without
the need for ground-based spectroscopy, alleviating the bottleneck.

The crux of the PM method is the conversion of pulsational
phase modulation into light arrival time delays (TDs), for several
pulsation frequencies in the same star. While the phase modulation

� E-mail: murphy@physics.usyd.edu.au (SJM); shibahashi@astron.s.u-
tokyo.ac.jp (HS)

is a frequency-dependent quantity, the TD depends on the orbital
properties, only. Hence for all pulsation frequencies, the response
of the TDs to the binary orbit is the same, which distinguishes
this modulation from other astrophysical sources, such as mode
interaction (see e.g. Buchler, Goupil & Hansen 1997).

Previously, our approach used numerical differentiation of the
TDs to produce an RV curve, from which the final orbital solu-
tion was determined. The RV curves thus obtained were sometimes
unrealistic due to scatter in the TDs. Recognizing numerical differ-
entiation as the weakness of the method, we have now developed
a method of deriving the orbital properties from the TDs directly,
without the need to convert TDs into RVs. It is this method that
we describe in this paper. The RV curve is produced afterwards,
from the orbital properties, and is no longer a necessary step in the
analysis.

2 T D A NA LY S I S : M E T H O D O L O G Y A N D
E X A M P L E 1 : K I C 9 6 5 1 0 6 5

Let us divide the light curve into short segments and measure the
phase of pulsation in each segment. This provides us with TDs,
τ obs(tn), as observational data, where tn (n = 1, 2, . . . ) denotes the
time series at which observations are available. Fig. 1 shows an
example TD diagram (for the case of KIC 9651065), where TDs
vary periodically with the binary orbital period. The TD difference
between the maximum and the minimum gives the projected size
of the orbit in units of light-seconds. Deviation from a sinusoid
indicates that the orbit is eccentric. The TD curve is given a zero-
point by subtracting the mean of the TDs from each observation.
The pulsating star is furthest from us when the TD curve reaches
its maxima, while the star is nearest to us at the minima. The sharp
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Figure 1. An example of TD curve (KIC 9651065) using nine different pul-
sation modes, including one in the super-Nyquist frequency range (Murphy,
Shibahashi & Kurtz 2013). The weighted average is shown as filled black
squares.

minima and blunt maxima in Fig. 1 indicate that periapsis is at the
near side of the orbit. The asymmetry of the TD curve, showing
fast rise and slow fall, reveals that the star passes the periapsis after
reaching the nearest point to us. In this way, TD curves provide us
with information about the orbit.

Theoretically, TD is expressed as a function τ th(t) of time t and
the orbital elements: (i) the orbital period Porb, or equivalently, the
orbital frequency νorb := 1/Porb, or the orbital angular frequency
� := 2πνorb, (ii) the projected semimajor axis a1sin i, (iii) the ec-
centricity e, (iv) the angle between the nodal point and the periapsis
� ,1 and (v) the time of periapsis passage tp. Hence, these orbital
elements can be determined from the observed TD as a set of pa-
rameters giving the best-fitting τ th(t).

2.1 Least-squares method

The best-fitting parameters can be determined by searching for the
minimum of the sum of square residuals

χ2(x, λ) :=
∑

n

1

σ 2
n

[τth(tn, x) − τobs(tn) − λ ]2 , (1)

where σ n denotes the observational error in measurement of τ obs(tn).
Here the parameter dependence of τ th(t) is explicitly expressed
with the second argument x, which denotes the orbital elements
as a vector, and a parameter λ is introduced to compensate for the
freedom of τ obs(tn) = 0 (i.e. the arbitrary vertical zero-point). Hence
the parameters x and λ satisfying ∂χ2/∂x = 0 and ∂χ2/∂λ = 0 are
to be found, that is,∑

n

1

σ 2
n

[τth(tn, x) − τobs(tn) − λ ]
∂τth(tn, x)

∂x
= 0 (2)

and

λ =
(∑

n

1

σ 2
n

)−1 ∑
n

1

σ 2
n

[τth(tn, x) − τobs(tn)]. (3)

2.2 TDs as a function of orbital elements

In order to solve equation (2), we have to derive the explicit de-
pendence of τ th on the orbital elements. The readers may consult

1 We have chosen to represent this angle with � , rather than with ω, because
of the common use of ω to represent angular oscillation frequencies in
asteroseismology.

with the literature such as Freire, Kramer & Lyne (2001, Erratum:
Freire, Kramer & Lyne 2009). We derive τ th following Shibahashi
& Kurtz (2012) in this subsection. See also Shibahashi, Kurtz &
Murphy (2015).

Let us define a plane that is tangential to the celestial sphere on
which the barycentre of the binary is located, and let the z-axis that
is perpendicular to this plane and passing through the barycentre of
the binary be along the line-of-sight towards us (see Fig. 2). The
orbital plane of the binary motion is assumed to be inclined to the
celestial sphere by the angle i, which ranges from 0 to π. The orbital
motion of the star is in the direction of increasing position angle,
if 0 ≤ i < π/2, and in the direction of decreasing position angle, if
π/2 < i ≤ π.

Let r be the distance between the centre of gravity and the star
when its true anomaly is f. The difference in the light arrival time,
τ , compared to the case of a signal arriving from the barycentre of
the binary system is given by

τ = −r sin(f + � ) sin i/c, (4)

Figure 2. Top: schematic side view of the orbital plane, seen from a faraway
point along the intersection of the orbital plane and the celestial sphere,
NFN′, where the points N and N′ are the nodal points, respectively, and
the point F is the centre of gravity of the binary system; that is, a focus
of the orbital ellipses. The orbital plane is inclined to the celestial sphere
by the angle i, which ranges from 0 to π. In the case of 0 ≤ i < π/2, the
orbital motion is in the direction of increasing position angle of the star,
while in the case of π/2 < i ≤ π, the motion is the opposite. The z-axis is
the line-of-sight towards us, and z = 0 is the plane tangential to the celestial
sphere. Bottom: schematic top view of the orbital plane along the normal
to that plane. The periapsis of the elliptical orbit is P. The angle measured
from the nodal point N, where the motion of the star is directed towards us,
to the periapsis in the direction of the orbital motion of the star is denoted as
� . The star is located, at this moment, at S on the orbital ellipse, for which
the focus is F. The semimajor axis is a and the eccentricity is e. Then OF is
ae. The distance between the focus, F, and the star, S, is r. The angle PFS is
‘the true anomaly’, f, measured from the periapsis to the star at the moment
in the direction of the orbital motion of the star. ‘The eccentric anomaly’,
u, also measured in the direction of the orbital motion of the star, is defined
through the circumscribed circle that is concentric with the orbital ellipse.
Figure and caption from Shibahashi et al. (2015), this volume.

MNRAS 450, 4475–4485 (2015)

 at U
niversity of T

okyo L
ibrary on July 5, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


PM stars II 4477

where � is the angle from the nodal point to the periapsis, i is the
inclination angle and c is the speed of the light (see Fig. 2). Note
that τ is defined so that it is negative when the star is nearer to us
than the barycentre.2 The distance r is expressed with the help of
a combination of the semimajor axis a1, the eccentricity e, and the
true anomaly f:

r = a1(1 − e2)

1 + e cos f
. (5)

Hence,

τ (t, x) = −a1 sin i

c
(1 − e2)

sin f cos � + cos f sin �

1 + e cos f
. (6)

The trigonometric functions of f are expressed in terms of a series
expansion of trigonometric functions of the time after the star passed
the periapsis with Bessel coefficients:

cos f = −e + 2(1 − e2)

e

∞∑
n=1

Jn(ne) cos n�(t − tp), (7)

sin f = 2
√

1 − e2

∞∑
n=1

Jn
′(ne) sin n�(t − tp), (8)

where Jn(x) denotes the Bessel function of the first kind of integer
order n and Jn

′(x) := dJn(x)/dx. Equation (6) with the help of
equations (7) and (8) gives the TD τ th at time tn for a given set of
x = (�, a1 sin i/c, e, �, tp).

2.3 Simultaneous equations

Equation (2) forms a set of simultaneous equations for the unknown
x with the help of equation (6). Let us rewrite symbolically equation
(2) as

y(x) :=
∑

n

αn(x)
∂τth(tn, x)

∂x
= 0, (9)

where

αn := 1

σ 2
n

[τth(tn, x) − τobs(tn) − λ ] . (10)

This simultaneous equation can be solved by iteration, once we have
a good initial guess x(0):

y
(

x(0)
) +

(
∂ y

∂x(0)

)
δx = 0, (11)

2 That convention is established as follows. When the star lies beyond the
barycentre, the light arrives later than if the star were at the barycentre: it is
delayed. When the star is nearer than the barycentre, the TD is negative. A
negative delay indicates an early arrival time. Since the observed luminosity,
L, varies as

L ∼ cos ω(t − d/c),

where d is the path length travelled by the light on its way to Earth, then
the phase change, φ, of the stellar oscillations is negative when the TD is
increasing. That is,

τ ∝ −φ.

The convention we hereby establish differs from that in PM I (Murphy et al.
2014, equation 3), where the minus sign was not included. We therefore
had to introduce a minus sign into equations (6) and (7), there, in order to
follow the convention that RV is positive when the object recedes from us.
Hence, while the RV curves in that paper have the correct orientation, the
TD diagrams there are upside-down. Our convention here fixes this.

then

δx = −
(

∂x
∂x(0)

)−1

y
(

x(0)
)
. (12)

Hence we need a means to obtain a good initial guess x(0).

2.4 Initial guesses

2.4.1 Input parameters: observational constraints

An observed TD curve shows, of course, a periodic variation with
the angular frequency �. By carrying out the Fourier transform of
the observed TD curve, we determine � accurately. The presence
of harmonics (2�, 3�, . . . ) indicates that the TDs deviate from
a pure sinusoid. Hence, the angular frequency � is fairly accu-
rately obtained from the Fourier transform of the observed TD curve
(Fig. 3). Let A1 and A2 be the amplitudes in the frequency spectrum
corresponding to the angular frequencies � and 2�, respectively.
They are also accurately determined, by a simultaneous non-linear
least-squares fit to the TD curve. By folding the observational data
{τ obs(tn)} with the period 2π/�, we get the TD as a function of
orbital phase, φn := �(tn − t0)/(2π), where t0 is the time of the first
data point. We then know the orbital phases at which τ obs reaches
its maximum and minimum. In the case of KIC 9651065, shown in
Fig. 1, the frequency spectrum is shown in Fig. 3, and the obtained
quantities are summarized in Table 1. They are used as input pa-
rameters from which initial guesses for the orbital parameters are
deduced.

Figure 3. Fourier transform of the TD curve of KIC 9651065 shown in
Fig. 1. After identification of A1 and A2 in the Fourier transform, their
exact values and uncertainties are determined by a non-linear least-squares
fit to the TD curve.

Table 1. Observational constraints for
KIC 9651065.

Quantity Value Units

τmax 136 ± 27 s
τmin −211 ± 42 s
νorb 0.003 685 ± 0.000 011 d−1

A1 167.1 ± 3.06 s
A2 35.7 ± 3.06 s
φ(τmax) 0.54 ± 0.02
φ(τmin) 0.08 ± 0.02

MNRAS 450, 4475–4485 (2015)
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Figure 4. The amplitude ratio between the two components A1 and A2 of
KIC 9651065 provides us with an initial guess of e. The thick horizontal red
line is the measured 2A2/A1, and the thin lines above and below it are the
uncertainties.

2.4.2 Initial guess for e

The amplitude ratio between the two components A1 and A2 provides
us with an initial guess of e (Shibahashi & Kurtz 2012; Murphy et al.
2014):

J2(2e(0))

J1(e(0))
= 2A2

A1
, (13)

where J1(x) and J2(x) denote the first kind of Bessel function, of
the order of 1 and 2, respectively. This approximation is justified,
as the � dependence on the amplitude ratio is weak. In fact, this
approximation is good for a wide range of � . Even in the case of
e � 1, the approximation gives e(0) = 0.80 (see Fig. 4), from which
the correct value of e is recoverable. In the case of e 	 1, the LHS
of the above equation is further reduced to ∼e (Murphy et al. 2014).

2.4.3 Initial guess for tp

The largest and the smallest values of τ obs are well defined and
easily identified, as are the epochs of these extrema. Therefore, the
extrema and their epochs are useful for providing initial guesses for
the remaining orbital elements.

First, let us see when these extrema occur. With the help of the
known laws of motion in an ellipse (Brouwer & Clemence 1961),

r
df

dt
= a1�(1 + e cos f )√

1 − e2
(14)

and

dr

dt
= a1�e sin f√

1 − e2
, (15)

where � denotes the orbital angular frequency, the time variation
of τ shown in equation (4) is given by

dτ

dt
= −1

c

�a1 sin i√
1 − e2

[cos(f + � ) + e cos � ] . (16)

Hence, when τ reaches the extrema

cos(f + � ) = −e cos �, (17)

therefore

sin(f + � ) = ±
√

1 − e2 cos2 �. (18)

Since c dτ/dt = vrad, the extrema of τ correspond to the epochs
of vrad = 0. Geometrically, in Fig. 2, the extrema correspond to
the tangential points of the ellipse to lines parallel to NN′. Note
that the nearer side corresponds to negative TD while the farther
side corresponds to positive TD. Hereafter, the orbital elements
corresponding to the extremum of the nearer side are written with a
subscript ‘Near’, and those of the farther side are distinguished with
a subscript ‘Far’. These two points are rotationally symmetric with
respect to the centre of the ellipse, O. Hence the eccentric anomalies
of these two points, uNear and uFar, are different from each other by
π radians:

uFar − uNear = π. (19)

The eccentric anomaly u is written with �, e and tp as

u = �(t − tp) + 2
∞∑

n=1

1

n
Jn(ne) sin n�(t − tp). (20)

Since the initial guesses for � and e are already available, the
eccentric anomaly u in equation (20) is regarded as a function of t
with a free parameter tp. The epochs of the extrema of τ obs, noted
as tNear and tFar, respectively, are observationally determined. Then,
by substituting tNear and tFar into equation (20) and with a constraint
given by equation (19),

�(tFar − tNear) + 2
∞∑

n=1

1

n
Jn(ne)

× {
sin n�(tFar − tp) − sin n�(tNear − tp)

} − π = 0. (21)

This equation should be regarded as an equation with an unknown
tp. To get a good initial guess for t (0)

p , we define

φp := �

2π
(tp − t0) (22)

and

�(φp) := 2π(φFar − φNear) + 2
∞∑

n=1

1

n
Jn(ne)

× {
sin 2πn(φFar − φp) − sin 2πn(φNear − φp)

} − π. (23)

We search for zero-points of �(φp) for a given set of (φNear, φFar) and
e = e(0), where φFar and φNear are the orbital phases corresponding
to τmax and τmin, respectively, that are already measured.

As in the case shown in Fig. 5, there are two roots satisfying

�
(
φ(0)

p

)
= 0, (24)

one corresponding to the case (A) that the pulsating star in question
passes the periapsis soon after the nearest point to us, and the other
corresponding to the case (B) that the star passes the apoapsis just
before the nearest point to us. It is expected then that the sum of �

derived from these two solutions is 2π, that is, these two solutions
are explementary angles.

2.4.4 Initial guess for �

Once φp is determined, equations (7) and (8) give the true anomaly
at the nearest point, fNear;

cos f
(0)
Near = −e + 2(1 − e2)

e

∞∑
n=1

Jn(ne) cos 2πn(φNear − φp),

(25)

MNRAS 450, 4475–4485 (2015)
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Figure 5. �(φp) (red curve) for KIC 9651065. The zero crossings each

give an initial estimate for φ
(0)
p ; �(φ(0)

p ) = 0. Vertical lines at ‘φF’ and ‘φN’
show the orbital phases of the furthest and the nearest points, corresponding
to the maximum and the minimum of the TD, respectively. The light cyan
bands show the uncertainty ranges of φF and φN.

sin f
(0)
Near = 2

√
1 − e2

∞∑
n=1

Jn
′(ne) sin 2πn(φNear − φp). (26)

Since equations (17) and (18) should be satisfied at the nearest
point, we define two discriminants

D1(� ) := cos(fNear + � ) + e cos � (27)

D2(� ) := sin(fNear + � ) −
√

1 − e2 cos2 � (28)

and search for � (0) satisfying both of D1(� (0)) = 0 and D2(� (0)) = 0
(Fig. 6). Corresponding to the presence of two possible solutions
of φp, there are two solutions of � , which are explementary angles
(see Fig. 7).

It should be noted here that both φp and � are determined as
functions of e. Their dependence on e for a given set of τ F and τN

is shown in Fig. 8.

2.4.5 Initial guess for a1sin i

Once e and � are determined, the projected semimajor axis, a1sin i,
is determined in units of light travel time, with the help of τmax −
τmin, by

a1 sin i

c
= (τmax − τmin)

2

(
1 − e2 cos2 �

)−1/2
. (29)

Note that the two solutions of � obtained above lead to an identical
value of a1sin i/c.

2.4.6 TD curve for initial guesses

Substitution of the initial guesses thus obtained into equation (6)
leads to an initial guess for the TD curve. Among the two possible
pairs of solutions, one of them generates a reasonable TD curve
that fits the observations, while the other generates a TD curve
that is an almost mirror image of the observed TD curve. The χ2

value easily discriminates between the two values of � , so this can
be automated. Fig. 9 demonstrates the situation, using the initial
guesses for the orbital parameters tabulated in Table 2. One of the
solutions, with periapsis at the far side, fits the data well, while

Figure 6. Discriminants from equations (27) and (28) for � of
KIC 9651065. The value of � satisfying both of D1(� ) = 0 and D2(� ) = 0
can be the solution. The upper panel is the case (A) that the periapsis in the
near side to us, while the lower panel indicates the case (B) that the periapsis
in the far side from us. It is clearly seen that the angle � of the case (A) and
that of the case (B) are explementary angles.

Figure 7. Two solutions satisfying D1(� ) = D2(� ) = 0. The line of sight
is assumed to be perpendicular to NN′ and the star is viewed from the right-
hand side. The left-hand panel is the case (A) that the periapsis in the near
side to us, while the right-hand panel indicates the case (B) that the periapsis
in the far side from us. It is clearly seen that the solution of the case (A) and
that of the case (B) are explementary angles.

the other one having periapsis at the near side has a larger value
of χ2/N, so the latter is rejected. Of course, the correct solution is
consistent with qualitative expectations described in Section 1; the
periapsis of the star is at the near side of the orbit, and the pulsating
star passes the periapsis after reaching the nearest point to us, that
is, π/2 < � < π.

MNRAS 450, 4475–4485 (2015)
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Figure 8. The dependence of φp (top panel) and � (bottom panel) on e for
a given set of τF and τN of KIC 9651065. In this case, for e � 0.13, there
is no solution satisfying �(φp) = 0. It is clearly seen that � of the case
(A) and that of the case (B) are explementary angles.

Figure 9. The TD curves for KIC 9651065 constructed with the two sets
of initial guesses for the orbital parameters. The red curve, generated with
the parameters in the first line of Table 2, matches the observed ‘TD’ τ obs

(violet dots with error bars), wrapped with the orbital period. On the other
hand, the green curve generated with the parameters in the second line of
Table 2 has a larger value of χ2/N, so it is rejected. The periapsis passage
φp was chosen as the orbital phase of zero. The data points τ obs were shifted
vertically by the amount λ so that they match the red curve.

Fig. 9 demonstrates how well the TD curve computed from the
initial guesses reproduces the observed TDs. The orbital phase of
zero is chosen so that φp = 0. The data points of τ obs were verti-
cally shifted by the amount λ defined by equation (3), so that they
match τ th.

Table 2. Possible solutions as initial guesses
for the orbital parameters of KIC 9651065 de-
duced from the observational constraints listed
in Table 1. The parameters φp and � given in
the first line of each are appropriate to be ini-
tial guesses, while those in the second line are
unsuitable.

Quantity Value Units

νorb 0.003 685 ± 0.000 011 d−1

(a1sin i)/c 174 ± 25 s
e 0.427 ± 0.037

φp 0.11 ± 0.04
0.51

� 1.90 ± 0.23 rad
4.39

2.5 Search for the best-fitting parameters

Once a set of initial guesses for a1sin i, e, φp and � are obtained, we
may search for the best-fitting values of these parameters that min-
imize χ2/N by iteration. We regard � as a fixed value, because the
orbital period is already well determined from the Fourier transform
of the TD curve. The best-fitting values of the orbital parameters are
summarized in Table 3, and the TD curve obtained thusly, matching
best the observed TD according to the χ2 minimization illustrated
in Fig. 10, is shown in Fig. 11.

The bottom line of Table 3 lists the mass function f(m1, m2, sin i),
defined by

f (m1, m2, sin i) := (m2 sin i)3

(m1 + m2)2

= (2π)2c3

G
ν2

orb

(
a1 sin i

c

)3

, (30)

where m1 and m2 denote the masses of the primary (the pulsating
star in the present case) and the secondary stars, respectively, and

Table 3. The best-fitting orbital parameters of
KIC 9651065 deduced from the observational con-
straints listed in Table 1.

Quantity Value Units

νorb 0.003 684 ± 0.000 011 d−1

(a1sin i)/c 183.2 ± 5.0 s
e 0.44 ± 0.02
φp 0.14 ± 0.02
� 2.11 ± 0.05 rad
f(m1, m2, sin i) 0.0896 ± 0.0074 M�

Figure 10. χ2/N as a function of (e, a1sin i/c) for KIC 9651065.
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Figure 11. The best-fitting TD curve for KIC 9651065. The periapsis pas-
sage φp was chosen as the orbital phase of zero.

G is the gravitational constant. The value of f(m1, m2, sin i) gives
a minimum secondary mass of m2 = 0.82+0.04

−0.06 M� based on an
assumption of m1 = 1.7 M�, so the secondary is probably a main-
sequence G star.

2.6 Uncertainties

The uncertainties on the final orbital parameters are the result of
propagation of the observational uncertainties, which are obtained
as follows. The uncertainty on the orbital frequency is obtained from
a non-linear least-squares fit to the TD curve before phase-folding.

As for a1sin i/c and e, first, we take a2D slice cut of χ2 in an (e,
a1sin i/c)-plane (Fig. 10). Then by taking a 1D cut of the plane at
the values corresponding to the best-fitting value of a1sin i/c, we
get a histogram of χ2 along that line. Since the distribution about
that line is approximately Gaussian, the FWHM (full width at half-
maximum) of that Gaussian gives the uncertainty. The uncertainty
thus evaluated on a1sin i/c for KIC 9651065 is ∼5 s, and that on e
is 0.02. The uncertainties on the other parameters are evaluated in
the same manner, and they are listed in Table 3.

2.7 Radial velocity

Since vrad = c dτ/dt, once the orbital parameters are deduced, it is
straightforward to obtain the RV:

vrad = −�a1 sin i√
1 − e2

[cos(f + � ) + e cos � ] . (31)

Fig. 12 shows the RV curve thus obtained for KIC 9651065.
In Murphy et al. (2014), we wrote ‘ RV curves derived with the

PM method could be used as input for codes that model eccentric
binaries, such as PHOEBE. Given that such codes aim to infer
the geometry of the orbit, modelling the TDs themselves might
be preferred over the RV curve, since the former give the binary
geometry directly and more precisely.’ Our hopes were realized in
this work. The RV curve is now provided only as a visualization, it
is not required for the derivation of the orbital parameters.

3 EX A M P L E 2 : K I C 1 0 9 9 0 4 5 2

Our method is also applicable to pulsators in binary systems with
short TDs. In this section, we demonstrate KIC 10990452, for which
the range of variation in TD is about 1/4 of the case of KIC 9651065.
Fig. 13 shows the TD curve for KIC 10990452. Deviation from a

Figure 12. RV of KIC 9651065. The periapsis passage φp was chosen as
the orbital phase of zero.

Figure 13. TD curve of KIC 10990452 obtained from seven different pul-
sation modes. The weighted average is shown as filled black squares.

Table 4. Observational constraints for
KIC 10990452.

Quantity Value Units

τmax 63.2 ± 12.6 s
τmin − 45.4 ± 10.0 s
νorb 0.008 1855 ± 0.0000 142 d−1

A1 49.22 ± 1.95 s
A2 13.14 ± 1.32 s
φ(τmax) 0.77 ± 0.02
φ(τmin) 0.15 ± 0.02

sinusoid indicates that the orbit is eccentric as in the case of Exam-
ple 1: KIC 9651065. However, contrary to the case of KIC 9651605,
its maxima are sharp and the minima are rounded. These facts indi-
cate that periapsis is at the far side of the orbit. Fast fall and slow rise
reveal that the star passes the periapsis after reaching the farthest
point from us. Table 4 summarizes the observational constraints for
KIC 10990452.

Substitution of these parameters into equation (23) leads to two
roots of �(φp) = 0, as shown in Fig. 14, and each solution has �

satisfying D1(� ) = D2(� ) = 0, as demonstrated in Fig. 15, whose
sum is 2π. Initial guesses for the eccentricity, e, and the projected
semimajor axis, a1sin i, are calculated using equations (13) and (29).

Substitution of the initial guesses thus obtained into equation (6)
leads to an initial guess for the TD curve. Among the two possible
pairs of solutions, the one giving the smaller value of χ2/N fits
the observations, as shown in Fig. 16. The other set with the larger
value of χ2/N is rejected.
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Figure 14. Same as Fig. 5, but for KIC 10990452.

Figure 15. Same as Fig. 6, but for KIC 10990452.

The best-fitting parameters are obtained by searching for the
minimum of χ2/N as a function of (e, a1sin i). Fig. 17 shows a 2D
colour map of χ2/N. The best-fitting parameters are summarized in
Table 5, and the TD curve generated with these parameters is shown
in Fig. 18. Finally, the RV curve is obtained as shown in Fig. 19.

As seen in the case of KIC 10990452, the present method is
applicable without any difficulty to pulsators in binary systems
showing TD variations of several tens of seconds. Judging from
the error bars in the observed TDs of Kepler pulsators, and from
the binaries we have found so far, we are confident that the present
method is valid for stars showing TD variations exceeding ∼±20 s.
While it may be possible to find binaries with even smaller TD
variations, such cases will be close to the noise level of the data

Figure 16. Same as Fig. 9 but for KIC 10990452. The green curve, gen-
erated with one of the solutions of parameters giving the smaller value of
χ2/N, where N denotes the number of data points, fits the data well. On the
other hand, the red curve generated with the other set of parameters has a
larger value, so it is rejected. The periapsis passage φp was chosen as the
orbital phase of zero.

Figure 17. χ2/N as a function of (e, a1sin i/c) for KIC 10990452.

Table 5. The best-fitting orbital parameters of
KIC 10990452.

Quantity Value Units

νorb 0.008 190 ± 0.000 014 d−1

(a1sin i)/c 61.3 ± 8.0 s
e 0.55 ± 0.03
φp 0.89 ± 0.02
� 5.81 ± 0.05 rad
f(m1, m2, sin i) 0.01 658 ± 0.00 649 M�

Figure 18. The best-fitting TD curve for KIC 10990452. The periapsis
passage φp was chosen as the orbital phase of zero.

MNRAS 450, 4475–4485 (2015)

 at U
niversity of T

okyo L
ibrary on July 5, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


PM stars II 4483

Figure 19. RV of KIC 10990452. The periapsis passage φp was chosen as
the orbital phase of zero.

and may require external confirmation. The noise limit is discussed
further in Section 4.

4 E X A M P L E 3 : T H E M O R E E C C E N T R I C C A S E
O F K I C 8 2 6 4 4 9 2

Fig. 20 shows the TD curve for another star, KIC 8264492. Devia-
tion from a sinusoid indicates that the orbit is highly eccentric, and
the number of harmonics to the orbital period visible in Fig. 21, as
well as their high amplitudes, confirm this. Let us see if our method
is valid for such a highly eccentric binary system. Its maxima are
sharp and the minima are rounded, indicating that periapsis is at the
far side of the orbit. Fast fall and slow rise reveal that the star passes
the periapsis after reaching the farthest point from us.

Figure 20. TD curve of KIC 8264492 obtained from seven different pulsa-
tion modes. The weighted average is shown as filled black squares.

Figure 21. Fourier transform of the TD curve of KIC 8264492 shown in
Fig. 20. Exact multiples of the orbital frequency (0.003 94 d−1) are indicated,
showing the many harmonics and implying high eccentricity.

Table 6. Observational constraints for
KIC 8264492.

Quantity Value Units

τmax 214.6 ± 42.9 s
τmin − 132.5 ± 26.5 s
νorb 0.003 9408 ± 0.0000 158 d−1

A1 159.90 ± 3.61 s
A2 50.41 ± 3.61 s
φ(τmax) 0.76 ± 0.02
φ(τmin) 0.12 ± 0.02

Figure 22. Same as Fig. 5, �(φp) (red curve), but for KIC 8264492.

The orbital frequency, the amplitudes of the highest component
and the second one, and the orbital phases at the maximum and
the minimum of the TDs are deduced from the Fourier transform.
They are summarized in Table 6. Substitution of these parameters
into equation (23) enables numerical root-finding of �(φp) = 0,
as shown in Fig. 22. One root corresponds to the case (A) that
the pulsating star in question passes the periapsis soon after the
nearest point to us, and the other corresponds to the case (B) that
the star passes the apoapsis just before the furthest point from us.
Corresponding to the presence of two possible solutions of φp, there
are two solutions of � , which are explementary angles (see Fig. 23).

Substitution of the initial guesses thus obtained into equation (6)
leads to an initial guess for the TD curve. As in the case of
KIC 9651605, among the two possible pairs of solutions, one of
them generates a reasonable TD curve that fits the observations,
while the other generates a TD curve that is an almost mirror image
of the observed TD curve, with a larger value of χ2/N (Fig. 24).
The correct solution is consistent with qualitative expectations de-
scribed at the beginning of this subsection; the periapsis of the star
is at the far side of the orbit, and the star passes the periapsis after
reaching the farthest point from us, that is, 3π/2 < � < 2π.

Fig. 24 shows the TD curve, computed for the initial guesses,
plotted with the observed TDs. The orbital phase of zero is chosen
so that φp = 0. The data points of τ obs were vertically shifted by the
amount λ, defined by equation (3), so that they match τ th. Unlike the
earlier example of KIC 9651065, there remain systematic residuals
in the TD curve for KIC 8264492.

The best-fitting parameter derived from a 2D colour map of χ2/N
(Fig. 25) are summarized in Table 7, and Fig. 26 and Fig. 27 show
the TD curve and the RV curve generated with these parameters,
respectively. Hence, with KIC8264492, we have demonstrated the
validity and utility of the PM method, even for systems with high
eccentricity.
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Figure 23. Same as Fig. 6 but for KIC 8264492. The upper panel is the case
that the periapsis is in the near side to us, while the lower panel indicates
the case that the periapsis is in the far side from us.

Figure 24. Same as Fig. 9 but for KIC 8264492. The violet curve, generated
with the parameters in the first line of Table 6, fits the data well. On the
other hand, the red curve generated with the other set of parameters has a
larger value of χ2/N, so it is rejected. The periapsis passage φp was chosen
as the orbital phase of zero.

5 D ISCUSSION

In this work, we have primarily focussed on deriving full or-
bital solutions for highly eccentric binaries. Our first example,
KIC 9651065, was also studied in our previous work (Murphy et al.
2014), and so a direct evaluation of the improvement in technique
is possible.

Figure 25. χ2/N as a function of (e, a1sin i/c) for KIC 8264492.

Table 7. The best-fitting orbital parameters of
KIC 8264492 deduced from the observational con-
straints listed in Table 6.

Quantity Value Units

νorb 0.003 940 ± 0.000 016 d−1

(a1sin i)/c 204.8 ± 25.8 s
e 0.67 ± 0.04
φp 0.80 ± 0.02
� 5.28 ± 0.05 rad
f(m1, m2, sin i) 0.143 08 ± 0.05 410 M�

Figure 26. The best-fitting TD curve for KIC 8264492. The periapsis pas-
sage φp was chosen as the orbital phase of zero.

Figure 27. Same as Fig. 12 but for KIC 8264492.
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Table 8. Comparison of the uncertainties in the orbital parameters for
KIC 9651065. (i) Those calculated here by fitting the TD data in this work
versus (ii) those calculated through fitting RVs obtained by taking pairwise
differences of the TD data in previous work.

Quantity Units Value Value
This work Previous work

νorb d−1 0.003 684 ± 0.000 011 0.003 667 ± 0.000 016
(a1sin i)/c s 183.2 ± 5.0 185.0 ± 10.0
e 0.44 ± 0.02 0.47 ± 0.03
� rad 2.11 ± 0.05 2.01 ± 0.30
f(m1, m2, sin i) M� 0.0896 ± 0.0074 0.0916 ± 0.0108
χ2/N 1.80 2.21

5.1 Improvement in technique

The improvement can be seen in two ways. Firstly, the quality of
the fit of the theoretical TD curve to the data can be evaluated
in terms of the reduced χ2 parameter. The former method gave a
value of 2.21 for KIC 9651065, compared to 1.80 for the analytical
approach presented in this work. Secondly, one can compare the
uncertainties in the orbital parameters obtained by each method.
Table 8 shows that smaller uncertainties, particularly in � , result
from fitting the TDs directly, rather than fitting the RVs obtained by
pairwise differences of the TD data.

There are also new improvements in the elimination of systematic
errors. Previously, the eccentricity would be underestimated due to
the reliance on the approximation in equation (13) (equation 5 in
Murphy et al. 2014). This was also strongly subject to noise spikes
in the Fourier transform of the TDs. Now, that approximation is
only used as an initial guess, and the search for the minimum in the
χ2 distribution obtains the best-fitting value more reliably.

5.2 Factors affecting the minimum measurable TD

The detection of the smallest companions, which give rise to the
smallest TDs, requires a thorough understanding of the dominant
contributors to the noise and how that noise can be mitigated.

There are many ways that the noise level is affected by the prop-
erties of the pulsation and/or the sampling. The cadence of the ob-
servations has little impact on the quoted 20-s limit because Kepler
observations were mostly made in a single cadence (long-cadence
at 30 min), though for stars with ample short-cadence (60-s) data
the phase errors can be reduced by a factor ∼5 (Murphy 2012). The
noise can be reduced when the star oscillates in many modes, pro-
viding they have similar amplitudes to the highest amplitude mode.
The noise in the weighted average TDs is then reduced, though tak-
ing the weighted average means that the inclusion of more modes
of much lower amplitudes than the strongest mode does not help,
since phase uncertainties scale inversely with amplitude. Also for
this reason, we do not consider modes with amplitudes below one
tenth of that of the strongest mode in each star, and high-amplitude
pulsators are clearly more favourable. Furthermore, we consider a
maximum of nine modes per star due to diminishing return in com-
putation time. Finally, it is noteworthy that the smallest detectable
TD variation has no theoretical dependence on the orbital period,
providing the orbit is adequately sampled.

6 C O N C L U S I O N S

We have developed upon our previous work (Murphy et al. 2014),
where we showed how light arrival TDs can be obtained through

pulsational phase modulation of binary stars. Formerly, RVs were
calculated numerically from the TDs and the orbital parameters
were obtained from the RV curve. Here, we have shown how the
same orbital parameters are obtainable directly from the TDs. The
RV curve is now provided only as a visualization; it is not a necessary
step in solving the orbit.

We will be applying this method to the hundreds of classical
pulsators for which we have measured TDs with Kepler data, with
the aim of delivering a catalogue of TD and RV curves alongside
orbital parameters in the near future. We likewise encourage devel-
opers and users of binary modelling codes to consider taking TDs
as inputs.
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